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Euclidean Markov fields of higher integer spin 11. Massless 
case 
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Department of Physics, National University of Malaysia, Kuala Lumpur, Malaysia 

Received 10 May 1976 

Abstract. The Euclidean spin-1 massless vector field and the Euclidean spin-2 massless 
tensor field in general covariant gauges are shown to be Markovian. However, the reflection 
property is not satisfied. This indicates a close connection between the requirement of 
indefinite metric Hilbert space in Wightman theory and the violation of the reflection 
property in the Euclidean theory of electromagnetic and ‘gravitational’ potentials. 

1. Introduction 

The Euclidean massless scalar field can be obtained from Nelson’s theory of the massive 
scalar boson field (Nelson 1973a, b) by letting m = 0, provided the space-time dimen- 
sion 1123. For the spin-1 case, Gross (1975) has constructed the Euclidean elec- 
tromagnetic vector potential in Lorentz gauge; however he has not shown the Markov 
property of the field. Lim (1975) and Yao (1976) have respectively proved the Markov 
property for the Euclidean electromagnetic potential in general covariant gauges and 
the electromagnetic field. In this paper we shall construct a Euclidean massless spin-1 
vector field and a spin-2 tensor field in various covariant gauges. Both these fields are 
Markovian, but they do not satisfy the reflection property and hence do not lead to a 
Wightman theory in the Minkowski region. 

Unlike the massive case, the quantization procedure of Takahashi and Umezawa 
(Umezawa and Takahashi 1953, Takahashi 1969) does not work for the massless case. 
The reason is that the Klein-Gordon divisor does not exist. For example, the Maxwell 
equation in terms of the vector potential A, is 

A,,(d)A ”(x) = 0 (1.la) 

with 

A,, (a) = Og,, - a,au. 

d@” (d)A,, (a) = OS:, 

(1.lb) 

The inverse operator dj”’(d) for A,,(a) cannot be obtained from the equation 

(1.2) 
since the determinant of the left-hand side of equation (1.2) is zero whereas the 
determinant of the right-hand side is simply 0. This situation corresponds to Strocchi’s 
difficulty in the electromagnetic field related to the gauge problem (Strocchi 1970). 
Garding and Wightman (1964) showed in free quantum electrodynamics that weak 
locality and Lorentz covariance of the electromagnetic potential lead inevitably to an 
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indefinite metric Hilbert space. The analysis of Wightman and Strocchi indicated that if 
A’” is quasi-local or local and satisfies the Maxwell equation, 

a,F”’(x) = 0 
and 

F”’(x) = 8‘A ’ ( x )  - ~ ’ A , ( X )  

where F’”’ is the electromagnetic field tensor, then F’”’ is trivial. 
To circumvent these difficulties it has been usual to follow one of the following two 

methods. We can either abandon the requirement that A” should be relativistic 
covariant and quasi-local or local; or we can accept the fact that in a covariant and local 
theory, Maxwell equations are not satisfied as operator equalities. The first method is 
known as the Coulomb (or radiation) gauge formalism, which has the gauge condition 
V . A = 0 and the Hilbert space has positive definite metric. However, the theory is no 
longer manifestly covariant and local, so it is necessary to supply a gauge term with each 
Lorentz transformation in order to obtain covariance of the Coulomb condition. We 
shall adopt the second approach which is known as the Gupta-Bleuler formalism. This 
is a local and covariant theory, but the underlying Hilbert space is not positive definite. 
The Maxwell equations are no longer satisfied in the whole indefinite Hilbert space. The 
physical states 14) are defined as those satisfying the non-local subsidiary condition 

~3,A”“’(x)l4) = 0 

where aPAC((+) is the positive-frequency part of the operator d,Aw. Then the Hilbert 
space spanned by the physical states 14) has a positive metric. However, this physical 
subspace is not dense in the original indefinite Hilbert space, so the Maxwell equations 
are only satisfied in the sense that they hold when one takes the matrix elements of these 
equations between physical statest. 

2. Free Euclidean electromagnetic potential 

The free propagator for the electromagnetic potential A’ in the Gupta-Bleuler 
formalism is 

D’”’(p) = (/pA’)= g y .  (2.1) 

This propagator determines the Lorentz gauge for A,. The corresponding Euclidean 
propagator is given by 

si, ( P I  = A ~ , A ~ D ~ ’ ( P ~  ipo) = 6 i j ~ - ~ 7  (2.2) 
where Ai, = 1 for i = p = 1,2 ,3;  A40 = i and Ai = 0 otherwise. Here we have used the 
same notation p 2  for both the Euclidean norm pE = - ( p 2  + p i )  and the Minkowski norm 
pM = po-p_. Sij is positive definite so we can construct a Euclidean vector potential dt 
with E [ d i 4 , ]  = 6ijpp-2. In order to consider the Euclidean electromagnetic vector 
potential in a wide class of covariant gauges we need the following gauge transforma- 
tion: 

I 
2 2 2  

di +sa[ = di +aiv (2.3) 

t After the completion of this paper, the author was able to show that Euclidean electromagnetic potential in 
Coulomb (or radiation) gauge is also Markovian. 
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where V is a real scalar random field independent of d, such that the propagator of the 
transformed field has the general form 

where F a 0  is a measurable function which parametrizes a family of covariant gauges 
for di. We require Fa 0 so that the Euclidean field has a positive semi-definite metric; 
however, we ignore the fact that the relativistic field should have a positive metric. In 
fact, in the Minkowski region there is a dipole ghost (except for F = 1 corresponding to 
the Lorentz gauge) and the Gupta-Bleuler formalism has to be used. We note that the 
limit as m + O  of the Euclidean propagator for the Proca field does not exist, but the 
propagator (2.4) is just the massless limit of the propagator of the vector meson in R, 
gauges in our previous paper. 

Now we can define the Euclidean one-particle space as the completion of the real 
vector test function space 9(R4) with respect to the norm given by the inner product 

( f ,  g > X = C  f i (x)Si j (x-y)gj(y)dx dy. (2.5) 
i , j  

The Euclidean vector potential with a family of covariant gauges parametrized by the 
gauge function F is defined as the generalized Gaussian random vector field over 3% with 
mean zero and covariance given by 

E [ N f ) d ( g ) l  = ( f ,  g)x .  

S i ' (  p )  = p2&j + (F-'( pz) - 1)pipj. 

The Euclidean propagator has an inverse of the form 

(2.6) 

Definition 1 .  The covariant gauge function F ( p 2 )  characterizing the Euclidean elec- 
tromagnetic vector potential d indexed by X i s  called a Markov gauge function if F a 0 
and its inverse F-' exists (except for the case F = 0) as a polynomial in p 2 .  

For the case F > 0, the existence of F-' as a polynomial in p 2  implies that S i '  is local, 
which guarantees the Markov property. However, for the case F = 0, corresponding to 
Landau (or transverse) gauge, the Markov property of the vector potential in this gauge 
is not so obvious, because now SI, is singular and cannot be inverted. Furthermore, Sij is 
positive semi-definite, so the Euclidean one-particle space is the quotient space 
X/ker ( I .  . . ( I x .  

Theorem 1 .  The Euclidean electromagnetic vector potential in covariant gauges 
parametrized by the gauge function F is Markovian if F is a Markov gauge. 

Proof. For F>O, S,j has a local inverse given by (2.6), the proof of Markov property 
given by Nelson (1973a, b) for the scalar case applies. 

For F = 0 (i.e. Landau gauge) we shall restrict ourselves to test functions satisfying 
Z i  a i f i ( x )  = 0, so that the inverse of Si, exists in this subspace and Nelson's argument can 
be used. Let 0 c lif be an open set and let X I  be the set of distribution vector fields f i  
such that 

1 i d i f i ( x ) = O  and llf\k,=c i ~ i ( p ) p - % ( p )  d 4 p < a .  
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Let XI be the Borel-ring generated by the Gaussian field dl over X I  and &(O) be the 
u-ring generated by d(f) ,  s u p f c  O,feX1. Let f ~ X , ( 0 )  and let eB' be the projection 
onto 0', the complement of 6'. Then if h E e(&) where 6' is the interior of 6", we have 

What we have just proved is the Markov property for a Euclidean electromagnetic 
potential satisfying the Lorentz condition. We note that only in the Landau gauge does 
the electromagnetic potential satisfy the Lorentz condition as an operator identity. 
Thus we obtain the same theory as Gross (1975) where test functions are subjected to 
the condition Xi d i d i  = 0 and the covariance is Siip-'. However, we remark that in no 
gauge do we get a Wightman theory. For example, F = 0 leads to a non-local theory and 
F = 1 leads to an indefinite metric. It is not surprising that the Euclidean electromag- 
netic potential does not satisfy the reflection property. 

Theorem 2. The Euclidean electromagnetic vector potential d does not satisfy the 
reflection property. 

Proof. The proof is exactly the same as for the massive vector field in Rs-gauges. 
The 4-4 component of the two-point Schwinger function contains the term 
p i p - 2 ( 1 - F ( p 2 ) ) p - 2  which allows test functions of finite XI norm localized at the 
hyperplane x4 = 0 of the form 

fib) =fib) 0 Sb4) 

d P ) f 4 ( X )  = -f4(x) 

with f4 # 0 and f i  E 9(R3). For such a test function we have 

where ~ ( p )  is a representative of reflection p. Therefore ~(p)d( f )  # d(f) .  

We might now ask for a property which, while more general than the reflection property 
(so as to include theories like electrodynamics and gravitation), yet still excludes very 
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non-local theories like the one with propagator of the form (-A+m2)”, n > 1. Such a 
property is known as the classical Markov property which can be formulated as follows. 
Let X be the completion of 9’(R4) in the norm defined by the covariance function of the 
random field in question. For any open set 6c R4, let X ( 0 )  be the (closed).subspace 
generated by { f ~  X ,  s u p f c  0) and let ZO be the @-algebra generated by { @ ( f ) l f ~  
X ( 0 ) ) .  Let X”(0) be the subspace of X(O) ,  consisting of measures, and let Zoo denote 
the Bore1 cr-ring generated by { @ ( f ) l f ~  Xo(0)} .  For any subset % c R4, denoted by Eo% 
the intersection n ( C o o ~ 0  3 %, 0 open}. Then we say that a field CD satisfies the classical 
Markov property if, for every function ‘9: R-, 88 which is &-measurable, and every 
open set oc I@, 

E[qZ,o’ l=  E[+@oacPl 
holds, where 6“ is the complement of 6 in R4, and 8 0  is the boundary of 6. 

The generalized random fields defined by the Euclidean electromagnetic potential 
in various Markov gauges are such that Zoao coincides with Zas = &, {ZO,lOi c do}. 
Hence the classical and Nelson’s definitions of Markovicity coincide. These fields 
therefore also satisfy the classical Markov property. 

3. Euclidean massless spin-2 tensor field 

In classical theory, massless spin-2 particles can be described by a rank-two tensor JIpY 
satisfying the wave equation 

( x )  = 0, (3.1) 

+ p ” ( x )  = $ b U P ( X )  (3.2) 

*p) = 0 (3.3) 

a&@” ( x )  = 0. (3.4) 

and the following subsidiary conditions: 

Just like the case of the electromagnetic vector potential, we cannot obtain all these 
equations by using the variational principle. This means that unlike the massive case, 
the Umezawa-Takahashi method of quantization does not apply here. The analysis 
carried out by Bracci and Strocchi (1972,1975) has shown that gauge problems in a 
massless spin-2 field give rise to difficulties analogous to those that exist in quantum 
electrodynamics. Their results indicate that a local and covariant description of a 
massless spin-2 field is possible only in a Hilbert space with indefinite metric. In other 
words, the Gupta-Bleuler formalism needs to be used. The presence of unphysical (or 
ghost) states in the theory requires the subsidiary conditions (3.3) and (3.4) to hold only 
on physical states 14) in the form 

where +E(+’ and 
The Fourier transform of the free propagator is then given by 

denote the positive frequency parts of +: and +”’”respectively. 
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This gives a theory of a massless spin-2 field in a gauge analogous to the Lorentz gauge 
in electromagnetic potential. 

The corresponding Euclidean propagator is 

which is positive definite and has a local inverse. A Euclidean Markov tensor field (c/ij 
with Sijmn as covariance can be constructed in the usual way. In order to obtain a theory 
of a massless spin-2 Euclidean tensor field in a wide class of covariant gauges, the 
following gauge transformation is necessary: 

T~~ -+ q;, = Wil + a,B, + ajBi + a,C (3.9) 

where B, and C are generalized random vector and scalar fields respectively, indepen- 
dent of each other, and independent of TIP The Fourier transform of the Euclidean 
propagator of the transformed field has the general form 

1 F(P2) 
sijmn ( p )  = 2 ( ( a i m a j n  + ainajm + a a i j a m n )  + 7 (ai ,pmpn + a m n p i p j )  

2P P 

where a is a real constant greater than or equal to -;; F, G and H are positive 
measurable functions (polynomial in p’). It is positive definite (or semi-definite) and 
has an inverse 

S & t ( p )  = 2 p 2 ( a i m a j n  + S i n a i m )  + a l O a i j a m n  + a z a i j p m p n  + a 3 a m n p i p j  

+ a,(&mplpn + ainpjpmt-  a jmpipn + a p p z p m  ) (3.11) 

with 

a1 = -[2u +az(a  +F)](4a + 1 +F)-’, 

= [3F + G + H - ( 4 ~  + 1)][ (1 + F + G + H ) ( ~ u  + 1 + F )  - (1 + F)(4F + G + H)]-’, 

U 3 = (4aG + 2FG - 4F) (5 + F)-  ’, ~ 4 =  -4G(2+ G)-’. 

The Euclidean one-particle space xl can be defined as the completion of the symmetric 
test function space Spro(R4) with respect to the inner product 

(3.12) 

The Euclidean massless spin-2 tensor field !P (or Euclidean gravitational potential in 
flat space) in covariant gauges characterized by Bi and C is defined as the generalized 
Gaussian tensor field with mean zero and covariance E[V(f)!P(g)] = (f, g)%. Now we 
have four gauge parameters as compared to one gauge parameter in the electromagne- 
tic potential. This is expected because the gauge transformation (3.9) for the spin-2 
potential involves a four-vector field and a scalar field, whereas in the spin-1 potential 
there is only a single scalar field. This clearly indicates that the spin-2 propagator will be 
of much larger variety than its spin-1 counterparts. 
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Definition 2. The covariant gauges characterized by the gauge functions F, G, H and 
parameter a are called Markov gauges if a l ,  a2, a3 and a4 are all local. In other words F, 
G, H a n d  a define a Markov gauge if Si&, exist as a local operator. The above definition 
does not include the transverse (or Landau) gauge with a = -f, F = +$, G = -1 and 
H = +$, and such that XI piSllm, ( p )  = 0. We shall see that in this gauge we also obtain a 
Markov field. 

Theorem 3. 
(i) The tensor field 9 with Markov gauges satisfies the Markov property. 
(ii) The tensor field 9 with the transverse gauge satisfies the Markov property. 

Proof. 
(i) Proof for (i) is just as before, Si;,, exists as a local operator. Hence the Markov 

property follows from Nelson’s argument. 
(ii) For the transverse (or Landau) gauge, the Euclidean propagator is singular and can 
be written in the following form: 

1 
Sijmn ( P I  = 7 (dimdjn + dindjm - 3d i jdmn)  

2P 
with dij  = 6, -p-’pipj. We have XI plSijm, and XI SI,,, = 0. Now consider the subspace 
X I  of a test function, satisfying the following conditions: f i /  =hl, X i  f i l  = 0 and Xi pix, = 0. 
For f ,  g E X1, the inner product in X reduces to 

Sijmn maps X1 into XI since for any h E Xl, 

The proof depends crucially on two points. Firstly, S,,, maps any element of c“(0) to 
an element belonging to K1(6). Second point is that the inverse of (Sim6,,)p-* is a local 
operator. The rest of the proof goes exactly like theorem 2 for the electromagnetic 
potential in the Landau gauge. 

A special case of interest is the following relativistic propagator for a graviton, 
considered by Isham and Abdus Salam (1973): 

(3.13) 

where c is a real parameter. In order to get a positive semi-definite Euclidean 
propagator we need to get a traceless Sijm,, namely 

Now Sljm, is independent of c and is positive semi-definite. The Euclidean one-particle 
space is then the quotient space X/ker (I. . .I(%. Again the Euclidean spin-2 potential in 
these gauges is Markovian. We need only consider the traceless symmetric subspace XI 
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of X; then S,,, maps any h E c"(6') into an element of X,(O). Then it is not difficult to 
verify the Markovicity of such a field. 

Theorem 4 .  The tensor field 9 with covariant gauges does not satisfy the reflection 
property. 

Proof. The proof is exactly similar to that for the electromagnetic potential; therefore 
we shall omit. 

Thus, we have another example of a Euclidean field which is Markovian but does not 
satisfy the reflection property. Again it does not lead to a Wightman theory in the 
Minkowski region. Actually for the Euclidean electromagnetic and 'gravitational' 
potentials, 7(p)  may be interpreted as CT rather than T, where Cis  charge conjugation 
and T is time reversal. Therefore we conclude that a Markov property alone is not 
enough to guarantee the existence of a Wightman field; the reflection property is also 
required to be satisfied. 
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